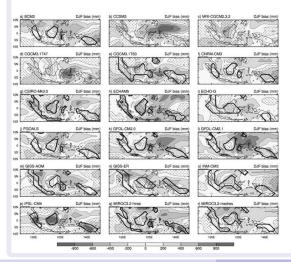
The role of coastline initiated precipitation in the tropics

Martin Bergemann^{1,3)}, Christian Jakob^{1,3)}, Todd Lane^{2,3)}


Monash University $^{1)},$ University of Melbourne $^{2)},$ ARC Center of excellence for climate system sciences $^{3)}$

MONASH University

Motivation Method Results Summary

How do GCM's represent the MC rainfall?

CMIP3 rainfall bias comparison for the MC (Suaydhi et al.)

Identifying coastline triggered rainfall 2 / 7

martin.bergemann@monash.edu

- land-sea-interaction is predominant on the MC
 - land-sea-breeze systems

• land-sea-interaction is predominant on the MC

- land-sea-breeze systems
- complex coastal shape and terrain

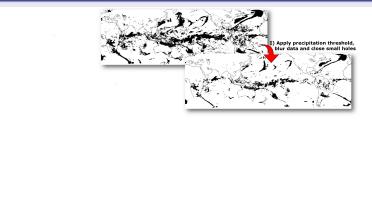
- land-sea-interaction is predominant on the MC
 - land-sea-breeze systems
- complex coastal shape and terrain
 - mountain-valley-breeze systems

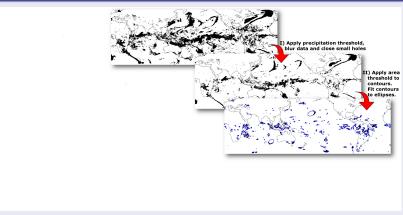
- land-sea-interaction is predominant on the MC
 - land-sea-breeze systems
- complex coastal shape and terrain
 - mountain-valley-breeze systems
- strong diurnal/nocturnal rainfall cycle

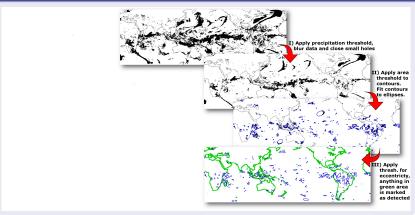
- land-sea-interaction is predominant on the MC
 - land-sea-breeze systems
- complex coastal shape and terrain
 - mountain-valley-breeze systems
- strong diurnal/nocturnal rainfall cycle
- influenced by large-scale phenomena like MJO and ENSO

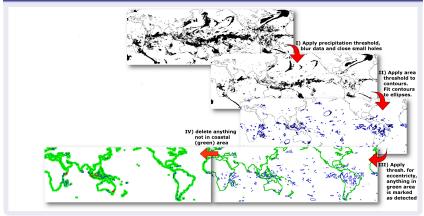
- land-sea-interaction is predominant on the MC
 - land-sea-breeze systems
- complex coastal shape and terrain
 - mountain-valley-breeze systems
- strong diurnal/nocturnal rainfall cycle
- influenced by large-scale phenomena like MJO and ENSO
- ⇒ Can the influence of the coast on rainfall be described and parametrized?

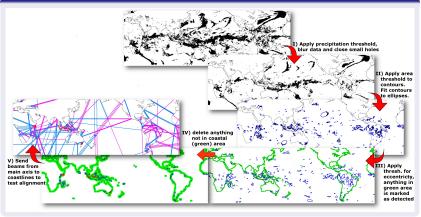
MONASH University CLIMATE SYSTEM SCIENCE

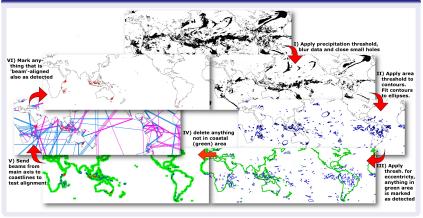

- land-sea-interaction is predominant on the MC
 - land-sea-breeze systems
- complex coastal shape and terrain
 - mountain-valley-breeze systems
- strong diurnal/nocturnal rainfall cycle
- influenced by large-scale phenomena like MJO and ENSO
- ⇒ Can the influence of the coast on rainfall be described and parametrized?

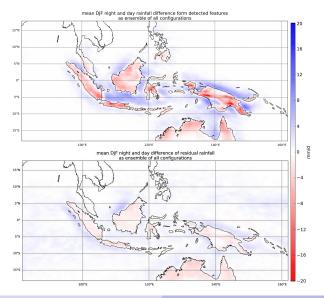

• Objectively identify rainfall due to land-sea interaction

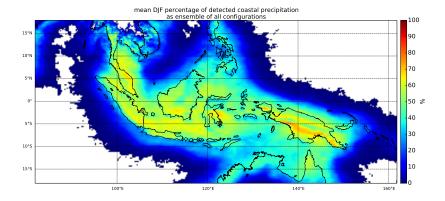

- land-sea-interaction is predominant on the MC
 - land-sea-breeze systems
- complex coastal shape and terrain
 - mountain-valley-breeze systems
- strong diurnal/nocturnal rainfall cycle
- influenced by large-scale phenomena like MJO and ENSO
- ⇒ Can the influence of the coast on rainfall be described and parametrized?
 - Objectively identify rainfall due to land-sea interaction
 - Identify large-scale variables favoring coastal rainfall

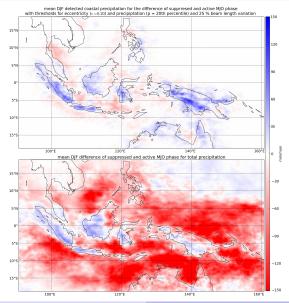

- land-sea-interaction is predominant on the MC
 - land-sea-breeze systems
- complex coastal shape and terrain
 - mountain-valley-breeze systems
- strong diurnal/nocturnal rainfall cycle
- influenced by large-scale phenomena like MJO and ENSO
- ⇒ Can the influence of the coast on rainfall be described and parametrized?
 - Objectively identify rainfall due to land-sea interaction
 - Identify large-scale variables favoring coastal rainfall








Can the diurnal cycle be reproduced?


MONASH University CLIMATE SYSTEM SCIENCE

Motivation Method Results Summary

How important is this type of rainfall for the MC?

How does the MJO affect this type of rainfall?

Identifying coastline triggered rainfall 6 / 7

martin.bergemann@monash.edu

- A way of objectively identify coastline induced rainfall has been developed
- The algorithm is very sensitive towards a rainfall threshold that has to be applied on the rain data

- A way of objectively identify coastline induced rainfall has been developed
- The algorithm is very sensitive towards a rainfall threshold that has to be applied on the rain data
- The method can be applied globally and on any rainfall dataset

- A way of objectively identify coastline induced rainfall has been developed
- The algorithm is very sensitive towards a rainfall threshold that has to be applied on the rain data
- The method can be applied globally and on any rainfall dataset
- First test runs are working and show that coastline triggered precipitation is of great importance for Maritime Continent

- A way of objectively identify coastline induced rainfall has been developed
- The algorithm is very sensitive towards a rainfall threshold that has to be applied on the rain data
- The method can be applied globally and on any rainfall dataset
- First test runs are working and show that coastline triggered precipitation is of great importance for Maritime Continent
- The results also suggest that there is a strong impact of large scale phenomena like ENSO and the MJO on the diurnal rainfall cycle over the Maritime Continent

- A way of objectively identify coastline induced rainfall has been developed
- The algorithm is very sensitive towards a rainfall threshold that has to be applied on the rain data
- The method can be applied globally and on any rainfall dataset
- First test runs are working and show that coastline triggered precipitation is of great importance for Maritime Continent
- The results also suggest that there is a strong impact of large scale phenomena like ENSO and the MJO on the diurnal rainfall cycle over the Maritime Continent
- With the established baseline dataset large scale variables that favor coastal rainfall will be identified.

- A way of objectively identify coastline induced rainfall has been developed
- The algorithm is very sensitive towards a rainfall threshold that has to be applied on the rain data
- The method can be applied globally and on any rainfall dataset
- First test runs are working and show that coastline triggered precipitation is of great importance for Maritime Continent
- The results also suggest that there is a strong impact of large scale phenomena like ENSO and the MJO on the diurnal rainfall cycle over the Maritime Continent
- With the established baseline dataset large scale variables that favor coastal rainfall will be identified.