Representing coastal tropical convection using a stochastic modeling framework

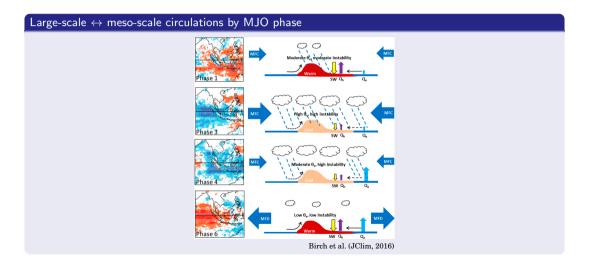
Martin Bergemann^{1,3)}, Christian Jakob^{1,3)}, Boualem Khouider²⁾ Monash University¹⁾, University of Victoria²⁾, ARC Center of excellence for climate system sciences³⁾

Representing coastal convection 0 / 10

martin.bergemann@monash.edu

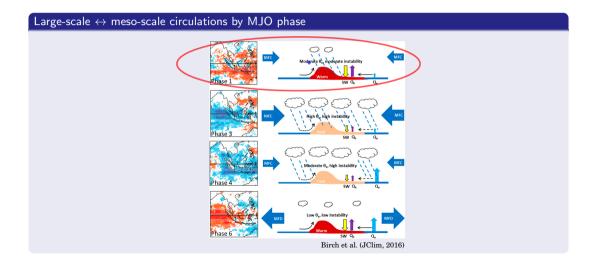
MONASH University

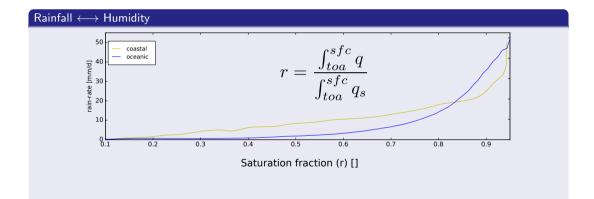
Motivation Method Results Conclusions

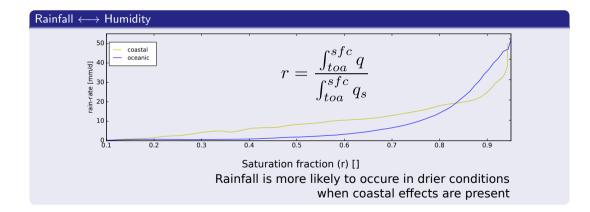


MONASH University

Motivation Method Results Conclusions







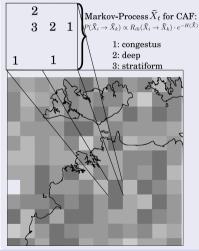
How can convection that is mainly driven by coastal meso-scale circulations be represented in a parametrization framework?

Modification of the Stochastic-Multicloud-Model (SMCM)

MONASH University CLIMATE SYSTEM SCIENCE

Motivation Method Results Conclusions

Modification of the Stochastic-Multicloud-Model (SMCM)



With:

- $ho(ar{X}_i o ar{X}_k)$ atmospheric conditions
- $H(\bar{X})$ neighborhood

Calculate birth, death and transitions rates R_{ik} between the cloud types.

Added expression for thermal-heating contrast

original version:

 $\begin{aligned} R_{12} &= \Gamma(C) \cdot (1 - \Gamma(D)) \cdot \frac{1}{\tau_{12}} \\ \text{modified version:} \\ R_{12}^* &= \tilde{\Gamma}(\Delta T)) \cdot \Gamma(\tilde{C}) \cdot (1 - \Gamma(\tilde{D})) \cdot \frac{1}{\tau_{12}} \end{aligned}$

With:

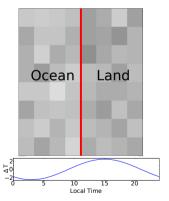
$$\begin{split} &\Gamma(x) = \max(1 - e^{-x}, 0) \\ &\tilde{\Gamma}(\Delta T) = \left(\arctan\left(\Delta T + \frac{\pi}{2}\right) + \frac{\pi}{2}\right) \cdot \frac{6}{5 \cdot \pi} \\ &\tilde{C} = \max(C + \gamma \cdot \Delta T, 0) \ \tilde{D} = \max(D + \gamma \cdot \Delta T, 0) \end{split}$$

Experimental setup

original version: $\begin{aligned} R_{12} &= \Gamma(C) \cdot (1 - \Gamma(D)) \cdot \frac{1}{\tau_{12}} \\ \text{modified version:} \\ R_{12}^* &= \tilde{\Gamma}(\Delta T)) \cdot \Gamma(\tilde{C}) \cdot (1 - \Gamma(\tilde{D})) \cdot \frac{1}{\tau_{12}} \end{aligned}$

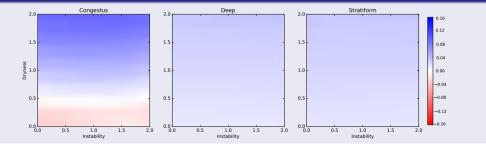
With:

$$\begin{split} &\Gamma(x) = \max(1 - e^{-x}, 0) \\ &\tilde{\Gamma}(\Delta T) = \left(\arctan\left(\Delta T + \frac{\pi}{2}\right) + \frac{\pi}{2}\right) \cdot \frac{6}{5 \cdot \pi} \\ &\tilde{C} = \max(C + \gamma \cdot \Delta T, 0) \ \tilde{D} = \max(D + \gamma \cdot \Delta T, 0) \end{split}$$



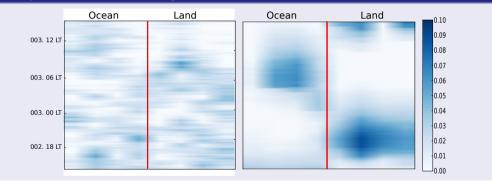
Sensitivity tests:

Cloud area fraction with instability and dryness (modified - original)



Spatio-temporal organization:

Diurnal cycle in a Hovmöller diagram



Real world example:

drive model with obs. data from Darwin

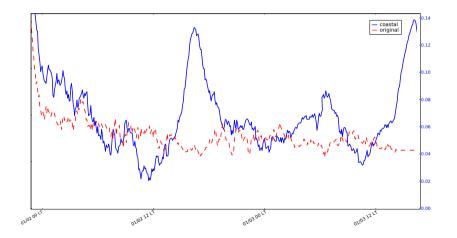
- period: Jan 1st 1998 Jan 4th 1998
- data : ERA-Interim (6 hours, 0.75°):

•
$$D = 2 \cdot (1 - r)$$

• $C = \frac{1h}{10hPa} \cdot \omega_{600hPa}$
• $\Delta T = \overline{T}_{land} - \overline{T}_{sea}$

Motivation Method Results Conclusions

Results:



Conclusions

simple characterization of coastal meso-scale circulations is more engineering then science but

- it improves the spatio-temporal organization of convection
- it reproduces the large-scale atmosphere to deep convection relationship near coasts
- $\longrightarrow\,$ the SMCM can provide a framework to parameterize many other meso-scale processes